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Abstract 1 

Predictions are constantly generated from diverse sources to optimize cognitive 2 
functions in the ever-changing environment. However, the neural origin and 3 
generation process of top-down induced prediction remain elusive. We 4 
hypothesized that motor-based and memory-based predictions are mediated by 5 
distinct feedback networks from motor and memory systems to the sensory cortices. 6 
Using fMRI and a dual imagery paradigm, we showed that motor and memory 7 
upstream systems excited the auditory cortex in a content-specific manner. 8 
Moreover, the inferior and posterior parts of the parietal lobe differentially relayed 9 
predictive signals in motor-to-sensory and memory-to-sensory networks. Our results 10 
reveal the functionally distinct neural networks that mediate top-down sensory 11 
prediction and ground the neurocomputational basis of predictive processing. 12 

Introduction 13 

Generating predictions is a trait of adaptive organisms to efficiently interact with 14 
the environment (Conant and Ashby, 1970; Friston, 2010; Schultz et al., 1997). For 15 
example, a seminal trend in cognitive neuroscience considers perception to depend 16 
on dynamic predictions based on the internal models of external world (Bar, 2007; 17 
de Lange et al., 2018; Rao and Ballard, 1999). In contrast to the feedforward 18 
information flow from sensory to non-sensory areas, coordinated feedback 19 
projections from non-sensory to sensory areas provide a neural substrate for 20 
conveying top-down sensory predictions (Keller and Mrsic-Flogel, 2018). 21 

How feedback projections convey predictive signals in the human brain remains 22 
enigmatic. Theoretically, the action-perception loop that links an agent’s cognitive 23 
system and the environment necessitates multiple forms of predictions. One 24 
category of predictions is motor based. According to theories of motor control, the 25 
agent could use a copy of the endogenous motor command and a model of 26 
action-consequence coupling to predict the sensory consequences of actions 27 
(McNamee and Wolpert, 2019; Shadmehr et al., 2010; Wolpert and Ghahramani, 28 
2000). Motor-based predictions could be used for world state estimation (Wolpert et 29 
al., 1995). The resulting prediction error could drive immediate motor correction as 30 
well as long-term motor learning (Jordan and Keller, 2020). Whereas, predictions 31 
that do not involve an agent’s actions are exemplified by the suppression of neural 32 
response to statistically organized stimuli (e.g., structured sequences (Garrido et al., 33 
2009; Todorovic et al., 2011) or associated pairs (Garner and Keller, 2022; Kok et al., 34 
2012)). Humans learn rich statistical regularities in the external world and utilize the 35 
exogenous information by transforming memory traces into sensory predictions. The 36 
combination of motor-based and memory-based predictive algorithms constructs a 37 
dual-stream prediction model (DSPM) (Tian and Poeppel, 2013; Tian et al., 2016) – 38 
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motor and memory systems could reverse their traditionally assumed roles as 39 
receivers of sensory information to act as independent sources that provide 40 
endogenous and exogenous information for generating sensory prediction (Figure 41 
1a). 42 

Methodological challenges also obstruct the investigation of the neural basis of 43 
prediction. This is partly because of the spatial-temporal overlapping between 44 
feedback prediction and feedforward input during perception (Keller and 45 
Mrsic-Flogel, 2018). Moreover, most studies investigate predictive processing by 46 
probing how prediction modulates perception, granting them only indirect access to 47 
feedback predictive signals. This indirect modulation approach that focuses on the 48 
functions of prediction is hard, if not impossible to reveal the neural origin and 49 
generation processes that constrain the cognitive computations and the neural 50 
implementation of predictive processing from a system perspective. 51 

Mental imagery serves as a promising paradigm for directly scrutinizing what 52 
and how feedback projections convey predictive signals. Imagery, a cognitive 53 
capacity to endogenously create episodic mental states (Langland-Hassan, 2020), 54 
has been widely reported to elicit perceptual-like neural representations (Bunzeck et 55 
al., 2005; Hubbard, 2010; Kosslyn et al., 1999; Kraemer et al., 2005; O'Craven and 56 
Kanwisher, 2000; Zatorre et al., 1996) resulted from top-down connectivity (Dentico 57 
et al., 2014; Dijkstra et al., 2017; Pearson, 2019). Because sensory prediction 58 
requires activating similar sensory representations of possible outcomes as imagery, 59 
imagery has been argued to be a mental realization of prediction (Moulton and 60 
Kosslyn, 2009) and exploit the same set of internal models as implemented in 61 
predictive processing (Langland-Hassan, 2016; Williams, 2021). Consistent with this 62 
proposal, mental imagery suppresses perceptual responses, similar as prediction 63 
does (Kilteni et al., 2018; Tian et al., 2018). 64 

Therefore, we leveraged mental imagery to investigate feedback projections 65 
that establish auditory representations in the absence of confounding feedforward 66 
signals so as to trace the neural origin of predictions. Moreover, our novel 67 
dual-imagery paradigm maximized the differences between motor-based and 68 
memory-based prediction as participants were asked to imagining speech or natural 69 
sounds that human articulators cannot produce (Figure 1b). The DSPM model and 70 
preliminary empirical findings (Li et al., 2020; Ma and Tian, 2019; Tian and Poeppel, 71 
2010; Tian et al., 2016) derive three major experimental predictions. First, both 72 
motor-based and memory-based predictions in different types of imagery would 73 
reactivate the auditory cortex without external acoustic stimulation. Second, the 74 
upstream networks for generating sensory predictions should be distinct. 75 
Motor-based imagery would activate the frontal motor network, whereas 76 
memory-based imagery would involve the frontal-parietal and hippocampal 77 
networks. Third and most importantly, information would flow directionally from 78 
motor or memory upstream systems to auditory areas in distinct functional feedback 79 
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networks that mediate the generation of prediction. The parietal lobe in particular 80 
would relay feedback projections, with posterior parietal cortex (PPC) subserving 81 
memory-based prediction (Dijkstra et al., 2017; Sestieri et al., 2017) and inferior 82 
parietal lobe (IPL) as a sensorimotor interface in speech (Hickok, 2012; Hickok and 83 
Poeppel, 2007) subserving motor-based prediction (Li et al., 2020; Tian and 84 
Poeppel, 2010; Tian et al., 2016). By using multiple analyses in conjunction, we 85 
obtained evidence that supported our hypotheses and revealed the origin, structure, 86 
and endpoint of feedback connections in generating predictions. 87 

Results 88 

Participants (N = 25) were familiarized with ten categories of 7-second videos 89 
featuring moving objects moving objects making sounds (e.g., a bouncing 90 
basketball, exploding firecrackers, a flowing stream, etc.). The videos were then 91 
muted in the later imagery sessions (Figure 1b). Participants were instructed to 92 
recall sounds that were present in the video (Imagery of Non-speech sounds, IN) or 93 
imagine speaking sentences (Imagery of Speech, IS) describing the scenes 94 
according to visual character cues superimposed on the center of the video (e.g., “A 95 
basketball bounces on the wooden floor over and over”; see Table S1 for sentences 96 
describing all 10 videos). In IN, comparable square mosaics were overlaid, keeping 97 
the net visual intensity consistent across IS and IN (Methods). The IN sessions 98 
preceded IS sessions such that participants were unaware of linguistic descriptions 99 
of the video and thus minimizing the possibility of their engaging imagery of speech 100 
during IN. After each trial, participants rated the vividness of imagery (range = 1 - 5). 101 
The length of the video yielded a long stimulus duration that increases the 102 
signal-to-noise ratio of imagery-related neural activities, and the dual imagery 103 
paradigm optimally bifurcates the motor and memory sources of auditory prediction 104 
in the same visual context. Two hearing conditions that were comparable to IS and 105 
IN were also included to locate auditory representations (Methods). 106 

Throughout the paper, we define significance in whole-brain analyses as 107 
voxel-wise P < 0.005 and cluster-wise PFDR < 0.05. We are refrained from 108 
discussing effects in the occipital lobe since they were resulted from visual 109 
stimulation. 110 

Behavioral results 111 

The completion and success of mental imagery are hard to assess behaviorally 112 
because imagery is an internal experience. We relied on the timeliness of the 113 
participants’ vividness report to infer whether they performed the imagery tasks 114 
instructed. Participants actively engaged in the imagery as the response rate of 115 
vividness rating after each trial was at ceiling (mean = 98.20%), with higher 116 
vividness ratings in IS than IN (t24 = 5.57, P = 10-5, two-sided paired t-test). 117 
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Common activations in auditory cortices accompanied by differential motor 118 
and memory activations 119 

To test the hypothesis that the auditory cortex is activated as the sensory 120 
endpoints of feedback signaling, we first carried out whole-brain univariate analyses. 121 
We found overlapping activations in both IS and IN in the bilateral posterior part of 122 
superior temporal gyri and sulci (pSTG and pSTS). The common activation in both 123 
IS and IN also extended to the left inferior parietal lobe (IPL) that anatomically 124 
covered parts of parietal operculum, posterior supramarginal gyrus, and planum 125 
temporale (Figure 1c, for whole-brain surface rendering see Figure S1). In IS, 126 
activations also extended to left anterior STG (aSTG), consistent with previous 127 
findings of aSTG harboring higher-level linguistic representations (e.g., phonemes 128 
and words (DeWitt and Rauschecker, 2012)). Activations at pSTG and IPL were 129 
observed in the hearing conditions (Figure S2), further supporting that these regions 130 
mediate auditory-like representations. 131 

Next, we contrasted IS with IN to examine differential activations that would 132 
likely distinguish upstream networks underlying prediction generation (Figure 1d). 133 
We took a minimum statistics approach (Nichols et al., 2005) to select voxels that 134 
showed both significant activity during one type of imagery and significant difference 135 
over the other (e.g., IS > IN masked with IS activations). IS induced stronger effects 136 
than IN in the frontal motor network, including the left premotor cortex (PMC) and 137 
pre-supplementary motor area (preSMA). IN activated the frontoparietal network 138 
(FPN) comprising the left ventrolateral prefrontal cortex (vlPFC) and bilateral 139 
posterior parietal cortex (PPC), and the cingulo-opercular network (CON) 140 
comprising the dorsal anterior cingulate cortex (dACC) and bilateral frontal 141 
operculum/anterior insular (FO/aINS).  142 
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 143 

Figure 1: Model of distinct pathways for generating prediction, experimental paradigms, and 144 
fMRI results of univariate analyses 145 
(a) The Dual-Stream Prediction Model (DSPM). The model posits that auditory representations in the 146 
temporal area can be established by two feedback streams. The motor-to-sensory stream originates 147 
from the frontal motor network where speech plan encoding is carried out. A copy of the motor plan 148 
(efference copy), relaying via the inferior parietal lobe, establishes auditory representations in the 149 
auditory cortex to predict the sensory consequence of speech action. The memory-to-sensory stream, 150 
originating in a distributed memory network including the prefrontal cortex, hippocampus, and 151 
superior parietal lobe reconstructs auditory representations in the auditory system via memory 152 
retrieval. (b) Experimental paradigm. Following a 500 ms fixation period, participants watched a 153 
muted video of objects in motion (frames from the bouncing basketball video are used for illustration). 154 
Participants were asked to imagine sounds ought to be in the video (e.g., the whomp of a basketball 155 
hitting the floor repeatedly) in the IN condition and imagine saying characters superimposed on the 156 
video in the IS condition. (c) Activations in the inferior parietal and superior temporal regions during 157 
IS and IN. Top: activations in the left hemisphere. Bottom: activations in the right hemisphere. Left: 158 
the mosaic view. Colored voxels were activated significantly in IS (red), IN (blue), or both (purple). 159 
Right: Thresholded surface rendering with t-value indicated by the color bar. See also Figure S1. (d) 160 
Thresholded surface rendering showing the conjunctions (minimum statistic) between 1) IS > IN and 161 
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IS, and 2) IN > IS and IN. IS induced stronger activations in the left PMC and preSMA, whereas IN 162 
induced stronger activations in the bilateral fronto-parietal and cingulo-opercular networks. 163 
 164 

Motor, memory, and auditory systems represent imagery contents 165 

To further test whether the activated areas represent imagery contents, we 166 
trained support vector machine-based classifiers to decode the imagery associated 167 
with 10 video categories in IS and IN (multivoxel pattern analysis, MVPA). To 168 
efficiently evaluate decoding accuracy across the brain, we conducted 169 
leave-one-run-out searchlight analyses with varying spherical radii ranging from 1 to 170 
8 voxels (Methods). 171 

High decoding accuracy observed in the visual cortex demonstrated the validity 172 
of our decoding method since the videos differed in visual stimulation. Moreover, we 173 
found above-chance accuracy (chance level = 10%) in bilateral pSTG and left IPL in 174 
both IS (Figure 2a), IN (Figure 2b), and comparable hearing conditions (Figure S3). 175 
These results support our hypothesis that specific auditory representations were 176 
activated in a top-down manner as auditory endpoints in the feedback networks. 177 

Consistent with univariate results, significant decoding of videos was found in 178 
the left PMC in IS. This decoding of imagery contents in the frontal motor region 179 
without participants’ overt movement suggests a motor representation space in the 180 
motor upstream network (Figure 2a). 181 

For IN, decoding accuracy was significantly above chance in bilateral PPC but 182 
not in vlPFC nor in the cingulo-opercular network (Figure 2b). Despite significant 183 
decoding observed in bilateral PPC during IS, two-sided paired t-tests showed that 184 
the decoding accuracy in parts of PPC (left intraparietal sulcus and right superior 185 
parietal lobule) was significantly higher in IN than that in IS reliably across 186 
searchlight radii (Figure 2c), suggesting memory representations in PPC in addition 187 
to putatively visual representations commonly available in both conditions 188 
(confirmed by a cross-classification analysis, Figure S4).   189 
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Figure 2: Results of multivoxel 190 
pattern analysis. 191 
(a) Decoding of video categories 192 
in IS. Top: thresholded surface 193 
rendering of decoding accuracy 194 
using a moving searchlight with a 195 
radius of 4 voxels. Bottom: 196 
decoding accuracy at regions of 197 
interest across different radii (1 – 8 198 
voxels). The triplet numbers in 199 
brackets denote MNI coordinate of 200 
the searchlight center. Asterisks 201 
denote significance level of 202 
decoding accuracy above chance 203 
level (10%). (b) Similar to (a) but 204 
for classification in IN. (c) Top: a 205 
coronal view and a surface 206 
rendering of areas showing higher 207 
decoding accuracy in IN than IS. 208 
Bottom: classifier performance in 209 
bilateral PPC during IS and IN 210 
across searchlight radii. Asterisks 211 
denote significance level of 212 
decoding accuracy higher in IN 213 
than IS. For all panels, error bars 214 
indicate 95% confidence interval. 215 
*P < 0.05; **P < 0.01; ***P < 0.001. 216 

 217 

 218 

 219 

Putting together the univariate and MVPA results, the selective activations and 220 
content specificity of PMC in IS, PPC in IN, and the auditory cortex in both 221 
conditions supported our first hypothesis of common sensory endpoint and our 222 
second hypothesis of differential upstream systems for motor-based and 223 
memory-based prediction. We next tested our last hypothesis about the feedback 224 
structures mediating the two types of predictions by examining the cortico-cortical 225 
connectivity with dynamic causal modeling (DCM). 226 

Motor-to-sensory and memory-to-sensory networks assessed by dynamic 227 
causal modeling 228 

For connectivity analyses, we selected regions of interest (ROIs) based on 229 
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univariate and MVPA results. The representative voxel coordinate of each ROI and 230 
their associated t-values for each contrast are reported in Table S2 and all selected 231 
voxels are visualized in Figure 3a. Our criteria are summarized here. For auditory 232 
ROIs, we selected areas that showed increased BOLD magnitude and 233 
representational patterns during both IS and IN, leading to our choice of left pSTG 234 
(sphere center x = -50, y = -46, z = 12) and its right homologue (sphere center x = 62, 235 
y = -36, z = 18). Given its consistent appearance revealed by multiple analyses, left 236 
IPL (sphere center x = -54, y = -38, z = 24) was also selected to test whether it 237 
serves as a mediating hub for motor-to-sensory and memory-to-sensory feedback 238 
networks. As for the motor ROI, we included left PMC (sphere center x = -38, y = 0, 239 
z = 36) based on its significantly higher activity during IS than IN and its 240 
content-selective pattern during IS. Left and right PPC were selected as memory 241 
ROIs and due to their being large and non-spherical clusters, we used the 242 
conjunction of the following contrasts to select all PPC voxels that showed 243 
significant effects: IN, IN > IS, IN MVPA and IN > IS MVPA. The resulting left PPC 244 
ROI entailed 120 voxels (centroid x = -20, y = -72, z = 40) and right PPC ROI 245 
entailed 548 voxels (centroid x = 24, y = -60, z = 54). 246 

To test our central hypothesis about the feedback projections from upstream 247 
motor and memory networks to the auditory cortex in generating content-specific 248 
prediction, we used dynamic causal modeling (DCM) (Friston et al., 2003), a 249 
well-established method that allows inference of directional brain connectivity 250 
modulated by an experimental condition (IS and IN, in the present study). DCM 251 
features a neuronal state equation which is coupled to a biophysically plausible 252 
model to explain BOLD signals (see Methods for details). Among all DCM 253 
parameters, our research question majorly concerns connectivity modulated by 254 
imagery. We specified and inverted two full motor-to-sensory and 255 
memory-to-sensory DCMs entailing all a priori imagery-modulated connectivity 256 
parameters ‘switched on’ using data from IS and IN sessions respectively. 257 

To construct a full motor-to-sensory DCM, we allowed IS to modulate 5 258 
connections: direct connections from left PMC to bilateral pSTG, and indirect 259 
connections from left PMC to left IPL and then to bilateral pSTG (Figure 3b). We 260 
then constructed 11 reduced models with a subset of these connections ‘switched 261 
off’ according to two factors, concerning the feedback architecture (direct-only / 262 
indirect-only / direct and indirect / null) and auditory endpoint (left pSTG / right pSTG 263 
/ left and right pSTG / null). The null model contained no modulated feedback 264 
connection and thus offers the null hypothesis. A graphical illustration of all reduced 265 
models is shown in Figure S5.  266 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.12.499695doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499695
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 267 

Figure 3: Motor-to-sensory and memory-to-sensory feedback networks assessed by dynamic 268 
causal modeling (DCM). 269 
(a) Regions of interest (ROIs) used for DCM. ROIs were spherical with a radius of 4 mm except for 270 
bilateral PPC ROIs, which were selected based on contrast conjunctions. (b) Graphical illustration of 271 
the full model of the motor-to-sensory feedback network. (c) Family-wise Bayesian model 272 
comparison of the two motor-to-sensory feedback model factors (feedback structure and sensory 273 
endpoints). Numbers on the right denote posterior probability. (d) Bayesian model average of 274 
effective connectivity parameters for the motor-to-sensory feedback network. Parameters that 275 
reached the significance level of posterior probability (Pp) > 0.75 were shown in black and otherwise 276 
in gray. Numbers out of paratheses denote parameter estimate in the unit of Hertz and numbers in 277 
paratheses denote posterior probability. (e-g) DCM results similar as (b-d) but for the 278 
memory-to-sensory feedback network. 279 

 280 

Under the Bayesian Model Reduction (BMR) scheme (Friston et al., 2016; 281 
Zeidman et al., 2019a; Zeidman et al., 2019b), the free energy (lower bound on 282 
model evidence) (Friston et al., 2007) of each reduced model was derived. This 283 
allowed us to perform Bayesian model comparison (BMC) to systematically infer 284 
whether motor-to-sensory connections were enhanced in IS and if so, through what 285 
route (direct versus indirect) and in which hemisphere they ended. BMC returned 286 
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the single winning model to be the full model itself with a posterior probability (Pp) 287 
higher than 0.99. We pooled reduced models according to the two factors to perform 288 
family-wise Bayesian model selection (Figure 3c), which revealed that the hybrid 289 
architecture entailing both direct and indirect connections to bilateral pSTG was the 290 
most likely (Pp > 0.99 for both families). We then summarized model parameters 291 
across all models by taking the weighted average of parameters from each model 292 
with the weight determined by each model’s Pp, an approach known as Bayesian 293 
model average (BMA) (Jennifer et al., 1999). The BMA results (Figure 3d) confirmed 294 
the essence of all 5 IS-modulated connections which all had a positive mean and 295 
Pp > 0.99. All these results together suggest a motor-to-sensory feedback 296 
architecture originating at the left PMC, mediated by left IPL, and ending at bilateral 297 
pSTG during IS. 298 

A similar procedure was applied to construct and evaluate memory-to-sensory 299 
DCMs using data from the IN session. This DCM model specified entailed 300 
IN-modulated connections between bilateral PPC, direct connections from bilateral 301 
PPC to pSTG, and indirect connections from PPC to left IPL and then to bilateral 302 
pSTG (Figure 3e). 112 Reduced models were constructed according to 4 factors: 303 
feedback origin (left PPC / right PPC / left and right PPC), auditory endpoint (left 304 
pSTG / right pSTG / left and right pSTG / null), feedback architecture (direct-only / 305 
indirect-only / direct and indirect / null), and PPC mutual connection (present / 306 
absent). 307 

BMC over reduced models of the memory-to-sensory DCM showed that the 308 
most probable (despite the relatively low Pp = 0.18) model entailed feedback 309 
connections initiating from bilateral PPC (without mutual connection) to bilateral 310 
pSTG via both direct and indirect pathways. Results of family-wise model selection 311 
over the two most important factors were shown in Figure 3f. Regarding the 312 
feedback architecture, evidence near equally supported the direct-only architecture 313 
(Pp = 0.47) and the hybrid architecture with both direct and indirect connections (Pp 314 
= 0.52). Bilateral PPC (Pp = 0.65) was more probable than right PPC alone (Pp = 315 
0.35) to be the feedback source, and bilateral pSTG (Pp = 0.69) was more probable 316 
than right pSTG alone (Pp = 0.30) to be the auditory endpoints. When summarizing 317 
individual parameter estimates using BMA, we found three significant (Pp > 0.75) 318 
connections along the direct route (Figure 3g): left PPC to right pSTG (mean = -0.23 319 
Hz, Pp = 0.82); right PPC to left pSTG (mean = 0.28 Hz, Pp = 0.85); and right PPC 320 
to right pSTG (mean = 0.54 Hz, Pp > 0.99). Overall, these results spoke for the 321 
existence of a memory-to-sensory projection from bilateral PPC to bilateral pSTG. 322 
IN modulated the left PPC to pSTG connection in an inhibitory manner while 323 
enhancing right PPC to pSTG connections, suggesting a hemispheric division of 324 
function. The lack of evidence in family-wise model selection and BMA did not 325 
support any mediating role of left IPL in memory-to-sensory feedbacks. 326 
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Distinct motor-to-sensory and memory-to-sensory feedback networks in 327 
generating predictions 328 

After mapping out the functional motor-to-sensory and memory-to-sensory 329 
feedback networks using IS and IN data respectively, we continued to ask whether 330 
the two networks were differentially implemented during IS and IN. To test our 331 
hypothesis of the two networks being functional distinct, we ‘swapped’ the 332 
data-model combination, that is, we re-inverted the full motor-to-sensory and 333 
memory-to-sensory DCMs (Figure 3b and Figure 3e) using data from the other 334 
imagery condition than that used in the previous section. That is, we used IN data 335 
(BOLD timeseries and imagery events in the condition) as inputs to the specified 336 
motor-to-sensory DCM and used IS data for memory-to-sensory DCM. We then 337 
compared variance explained by the DCM as well as PEB parameter estimates in 338 
each model fitted with IS and IN data. 339 

We found that the motor-to-sensory DCM fitted with IS data yielded significantly 340 
higher explained variance (mean = 14.96%) than with IN data (mean = 6.86%), as 341 
revealed by a two-sided Wilcoxon-signed rank test (P = 0.01, Figure 4a). However, 342 
no significant difference in mean parameter estimates (P > 0.09 for all five 343 
parameters, two-sided z-test) was found (Figure 4b). These results suggest that the 344 
motor-to-sensory model cannot effectively explain IN data, despite the fact that 345 
‘forced’ modeling fitting yielded similar parameter estimates. 346 

On the other hand, we did not see a significant difference (P = 0.90) in 347 
explained variance when fitting the memory-to-sensory DCM with IS and IN data 348 
(mean explained variance = 7.28 and 7.82) (Figure 4c). Significant difference in 349 
several PEB parameters was observed (Figure 4d). Notably, the modulated 350 
connections from right PPC directly to bilateral pSTG were significantly higher in IN 351 
than in IS (right PPC to left pSTG, P = 0.033; right PPC to right pSTG, P < 0.001). 352 
Such differences suggest that the memory-to-sensory architecture identified in the 353 
previous section does not explain activities during motor-based prediction. Whereas 354 
several connections involving left IPL in the indirect pathway yielded higher 355 
parameter estimates using IS data (left PPC to left IPL, P < 0.001; left IPL to right 356 
pSTG, P = 0.006). These results were consistent with the indirect pathway found in 357 
the motor-to-sensory DCM, as left IPL exerted excitatory connectivity to pSTG even 358 
in a memory-to-sensory DCM where no motor node was included. These results 359 
also explained why there was no significant decrease in explained variance when 360 
fitting the memory-to-sensory DCM with IS data, as some pSTG activity might have 361 
been explained by IPL-exerted connectivity. In summary, the results in the analysis 362 
of swapping different types of imagery in fitting DCM suggest that distinct functional 363 
motor-to-sensory and memory-to-sensory feedback networks and different 364 
subregions of parietal lobe (IPL vs. PPC) mediate the generation of content-specific 365 
auditory prediction in IS and IN.  366 
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 367 
Figure 4: Motor-to-sensory and memory-to-sensory feedbacks differentially take place during 368 
IS and IN. 369 
(a) Variance explained by the motor-to-sensory DCM. Data for each individual are joined by a gray 370 
line. Red and blue denote results obtained with data from IS and IN sessions respectively. The 371 
means of IS and IN data are indicated by thick solid lines. (b) PEB estimates for all five 372 
imagery-modulated connections in the motor-to-sensory DCM. (c-d) Similar to (a-b) but for the 373 
memory-to-sensory DCM. Error bars indicate 95% confidence interval. *P < 0.05; **P < 0.01; ***P < 374 
0.001 375 
 376 

Discussions 377 

Using fMRI with a dual imagery paradigm, we have characterized the neural 378 
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implementation of sensory prediction via feedback projections from motor and 379 
memory systems to the auditory cortex. Our results revealed the motor and memory 380 
systems as independent sources of prediction. The differential involvement of IPL 381 
and PPC in the motor-based and memory-based prediction pathways further 382 
suggests a functional division of the parietal lobe for routing the generation 383 
processes. The inter-areal communicative neural structures mediate distinct 384 
predictive processes via representational transformation, converging motor and 385 
memory information into sensory format for adaptive behavior. 386 

Motor-based prediction originates in the premotor cortex 387 

Significant activity was observed in the left PMC in the motor-based prediction 388 
task of IS and its representational specificity was supported by MVPA (Figure 1,2). 389 
These results are consistent with previous studies that stress PMC’s role in speech 390 
planning (Castellucci et al., 2022) as well as studies on speech imagery (Li et al., 391 
2020; Proix et al., 2022; Tian et al., 2016). In terms of lateralization, left PMC was 392 
more engaged in speech prediction. Crucially the directed connectivity from PMC to 393 
pSTG was enhanced by motor-based imagery, thus revealing PMC’s fundamental 394 
role as the upstream motor system in predicting the auditory consequence of 395 
speech. Two other common motor areas, preSMA and the inferior frontal gyrus (IFG, 396 
Brodmann area 44 and 45, see Figure S1) were also activated. Yet, neither of them 397 
possessed significantly decodable representations. 398 

These results suggest that the efference copy, as previously hypothesized 399 
(Wolpert and Ghahramani, 2000), is transformed from a copy of the motor plan 400 
generated in PMC and sent to the auditory cortex in a feedback manner. 401 

Inferior parietal lobe relays motor-to-sensory predictive signaling 402 

Motor-to-sensory information flow from the PMC to pSTG was achieved by both 403 
direct and indirect routes (Figure 3). The indirect route features IPL as a relaying 404 
hub (also referred to as the Sylvian parietal-temporal area, Spt). These results are 405 
consistent with previous reports of IPL activation in both speech perception and 406 
production (Buchsbaum et al., 2001; Hickok et al., 2003; Hickok et al., 2009).  407 

The intermediate step of IPL in the motor-based prediction generation route 408 
could be an auditory-motor interface and computes the transformation between 409 
motor and auditory representations (Hickok, 2012). Alternatively, because 410 
movement of articulators yield speech, the computation of auditory prediction could 411 
be mediated by predicting the sensorimotor status of articulators (Tian and Poeppel, 412 
2010; 2012). Thus, the IPL could be an intermediate stage for an abstract 413 
somatosensory prediction in a functional continuum between the somatosensory 414 
regions in anterior part of parietal lobe to the final auditory prediction starting in the 415 
posterior part of temporal lobe. Somatosensory prediction has been observed in 416 
secondary somatosensory area and extending to IPL (Kilteni and Ehrsson, 2020). In 417 
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the speech domain, the partial redundant predictions in the sensorimotor and 418 
auditory domains may provide computational benefits of detecting distinct noise 419 
sources. 420 

Posterior parietal cortex mediates memory-to-sensory predictive signaling 421 

PPC was active in the memory-based prediction task of IN and harbored 422 
imagery-specific codes in IN (Figure 1,2). DCM further revealed enhanced 423 
connectivity between right PPC and bilateral STG, suggesting right PPC is the 424 
crucial origin of the memory-to-sensory prediction network (Figure 3). The role of 425 
PPC in episodic memory has been demonstrated in a broad range of studies 426 
employing paradigms such as N-back (Barch et al., 2013; Owen et al., 2005), 427 
retention (Kwak and Curtis, 2022), and memory search (Sestieri et al., 2014). 428 
Directed connectivity from PCC to the sensory cortex has also been found in visual 429 
imagery (Dentico et al., 2014; Dijkstra et al., 2017). Altogether, these findings further 430 
support PPC as a general episodic buffer in generating memory-based prediction 431 
across memory tasks and modality. 432 

Another interesting property is that left PPC to STG connectivity is reduced 433 
instead of enhanced as observed in its right PPC to STG counterpart. This could be 434 
due to a hemispheric division of PPC in auditory memory or a functional-anatomical 435 
division of PPC, as the left PPC ROI we selected is majorly composed of the 436 
intraparietal sulcus while the right PPC ROI majorly consists of the superior parietal 437 
lobule. 438 

The prefrontal cortex and hippocampus were less supported by empirical 439 
evidence to be the origin in the memory-to-sensory network as they lacked 440 
significantly decodable patterns. As the role of vlPFC and hippocampus in memory 441 
maintenance and memory-based prediction has been described in the literature 442 
(Davachi and DuBrow, 2015; Kumar et al., 2016), the discrepancy may arise from 443 
the experimental design and analysis scheme. Throughout our analyses, we 444 
modeled the imagery events as sustained boxcar events. Since participants may 445 
recall the soundtrack of the videos immediately after their initiation appearance, 446 
vlPFC and hippocampus could support the initial retrieval of auditory memory 447 
through visual-auditory association which is then transferred to PPC for 448 
maintenance. The interpretation is however hard to assess due to the low temporal 449 
resolution of fMRI. 450 

Outside of DSPM, we also found that the cingulo-opercular network (CON, 451 
including FO/aINS and dACC/dmPFC) was more active in IN but lacked decodable 452 
multivoxel patterns. This is consistent with previous studies reporting CON to have a 453 
more modulatory rather than representational role in memory (Sestieri et al., 2014; 454 
Wallis et al., 2015). Because our study focuses on representational transformations 455 
in feedback projections, we did not include CON in DCM to avoid complicating the 456 
model. Yet our data suggest CON may have a role in modulating memory-based 457 
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prediction and imagery. 458 

Common auditory reactivation via different feedback projections 459 

Common activation in both motor-based and memory-based imagery in the 460 
auditory cortex agrees with previous work on musical imagery (Halpern and Zatorre, 461 
1999; Li et al., 2020), speech imagery (Proix et al., 2022; Tian et al., 2016), and 462 
imagery of complex sounds (Bunzeck et al., 2005). Imagery induced similar 463 
activations in the auditory cortices as hearing controls, supporting the nature of 464 
sensory-like representation as the ending result of prediction. The commonality in 465 
auditory reactivation in IS and IN further suggests a sensory convergence of 466 
predictions originating in different upstream networks. Together, the common 467 
sensory activations by hearing and types of imagery hint at a neuroanatomical 468 
foundation for the integration of various predictive and stimulus-driven signals in the 469 
sensory system. At a more microscopic level, such integration may take place in 470 
distinct neural subpopulations in the sensory system that differentially respond to 471 
feedforward sensation and feedback prediction. A likely laminar organization for 472 
such functional populations involves feedback prediction sent to the deep layers of 473 
the sensory cortex (Kok et al., 2016; Rao and Ballard, 1999). Further investigations 474 
adapting our paradigm can aim to test this specific hypothesis, which will shed light 475 
on the microcircuitry that integrates feedforward input and feedback prediction. 476 

Conclusions 477 

In conclusion, using a dual imagery paradigm with fMRI, we found that motor 478 
and memory systems project to the sensory system via distinct network structures to 479 
generate sensory predictions. The neural origin and inter-areal communicative 480 
structures constrain the computations of representational transformation, creating 481 
the emergent properties of the distinct predictive neural networks for efficiently 482 
linking cognition with environment. 483 

Methods 484 

Ethics statement 485 

The experimental protocol was approved by the Institutional Review Board at 486 
New York University Shanghai (IRB00009975/FWA#00022531) in accordance with 487 
policies and regulations found in The Common Rule (45 CFR part 46). 488 

Participants 489 

Twenty-nine right-handed native Mandarin speakers participated in the 490 
experiment with informed consent and received monetary incentives. No participant 491 
reported a history of neurological or psychological illness. All participants had 492 
normal or corrected-to-normal vision. Data from four participants were removed 493 
from analyses due to excessive head motion or drowsiness during scanning. The 494 
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remaining 25 participants were included in the analyses (12 females; mean age ± 495 
standard deviation = 21.3 ± 2.3). 496 

Materials 497 

Ten different seven-second video clips with their corresponding audio tracks 498 
were selected and used as the stimuli in the experiment. All video clips were about 499 
scenes or objects and none of them contained human speech. Examples included a 500 
basketball bouncing on the wooden floor, a training quickly passing by, and a ringing 501 
telephone. Our motivation was to choose videos with sounds that were hard to 502 
simulate with human vocal organs, but easy to imagine with the aid of visual scenes. 503 
Every 500 ms a square image patch was superimposed on the center of the video, 504 
making a total of 14 patches. These images were either Chinese characters (black, 505 
against a white background) constituting a sentence that described the content (see 506 
Table S1) of the video clip or mosaics made by randomly shuffling pixels of the 507 
original character image, thus ensuring equal net luminance as the character 508 
images. We also created synthesized speech of the sentences in a male’s voice 509 
using the VoiceGen toolbox 510 
(https://github.com/ray306/VoiceGen).(https://github.com/ray306/VoiceGen). 511 

Procedure 512 

We presented participants with 12 sessions of videos following a structural 513 
scanning session. Trials in every session shared a similar procedure: fixation period 514 
(500 ms), video presentation (7 s), vividness rating/catch trial detection (< 3 s), and 515 
an inter-trial interval of either 4.44 or 6.66 s (2 or 3 repetition time for fMRI scanning) 516 
minus the response time for rating or detection task. If a participant did not press 517 
any button within 3 seconds or reported incorrectly during catch trial detection, the 518 
trial was considered as a no-response or wrong-response trial that was separately 519 
modeled, and thus excluded from further analyses. 520 

During the first 3 sessions, participants were presented with videos with the 521 
original audio tracks with mosaics overlaid on them. We refer to this condition as 522 
Hearing of Non-speech sounds (HN). Each HN session consisted of 22 trials which 523 
included two catch trials featuring a pure tone (frequency = 1000 Hz, duration = 715 524 
ms) played at a random time point of a random video. The other 20 trials consisted 525 
of ten videos each played twice in random order. After watching each video, 526 
participants were asked to report if they heard the pure tone in the video by pressing 527 
button 1 (for yes) or button 2 (for no) on an MRI-compatible response pad. 528 

Three sessions of Imagery of Non-speech (IN) followed. In these sessions, 529 
videos were muted, and mosaics were overlaid in the center. Participants were 530 
instructed to imagine the sounds they heard during the preceding HN sessions and 531 
rated the vividness of imagery (rating range = 1 - 5) with the response pad. This 532 
visually aided imagery of the non-speech task was similar to previous studies 533 
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(Bunzeck et al., 2005). Thereafter came three sessions of Imagery of Speech (IS) 534 
where the videos were also muted, and Chinese characters were overlaid on the 535 
videos. Participants were instructed to imagine saying the characters and gave a 536 
vividness rating afterwards. Every IS or IN session consisted of 20 videos with each 537 
of the 10 videos randomly played twice. 538 

The task in the last three sessions was Hearing of Speech (HS). During the 539 
video presentation, the original audio track was replaced with synthesized speech. 540 
Similar to the IN sessions, 2 catch trials were included in each session in which two 541 

nearby characters in the synthesized speech were reversed (e.g., 鞭炮 to 炮鞭; 542 

firecracker to ‘crackerfire’). Participants indicated whether they heard a reversal 543 
using the response pad in a similar manner as in HN sessions. 544 

The hearing sessions (HN and HS) were designed to localize areas that are 545 
activated by external auditory stimuli in a content-specific manner. The order of 546 
sessions (HN-IN-IS-HS) was designed such that participants were first familiarized 547 
with original sounds in the videos during HN, and were able to recall them during IN. 548 
IN sessions proceeded IS and HS sessions such that participants were unaware of 549 
and less likely to perform imagery of speech during IN. IS proceeded HS because 550 
there otherwise existed an alternative strategy for participants to retrieve their 551 
memory of the synthesized speech they had listened to. 552 

fMRI data acquisition 553 

MRI images were collected on a Siemens MAGNETOM Prismafit System 554 
(Erlangen, Germany) at East China Normal University. Anatomical images were 555 
acquired using a T1-weighted magnetization-prepared rapid acquisition gradient 556 
echo (MP-RAGE) sequence (192 sagittal slices; field of view (FOV) = 240 mm × 240 557 
mm; flip angle (FA) = 8°; repetition time (TR) = 2300 ms; echo time (TE) = 2320 ms; 558 
voxel size = 0.9375 × 0.9375 × 0.9000 mm3). Functional images were acquired 559 
using a T2*-weighted echo-planar imaging (EPI) pulse sequence (38 even-first 560 
interleaved slices; FOV = 192 mm × 192 mm; FA = 81°; TR/TE = 2220/30 ms; voxel 561 
size = 3.0 × 3.0 × 3.6 mm3; interslice gap = 0.6 mm). Functional slices were oriented 562 
to an approximately 30° tilt toward coronal from AC–PC alignment to maximize 563 
coverage of individual brain volumes.  564 

Preprocessing 565 

Preprocessing of fMRI data and subsequent analyses were implemented via 566 
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/, version 7771) and custom-written scripts 567 
with MATLAB R2021a (MathWorks Inc., Natick, MA, USA). Preprocessing followed 568 
the standard procedure in SPM12. 569 

All functional images from each participant were temporally interpolated to the 570 
first slice of each volume and spatially realigned to the mean image. The structural 571 
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image was co-registered with functional images. For univariate and DCM analyses, 572 
functional images were then spatially normalized to the Montreal Neurological 573 
Institute (MNI) standard brain space (resampled voxel size = 2 mm isotropic) and 574 
smoothed with a 6 mm full width, half maximum (FWHM) Gaussian kernel. For 575 
MVPA, the functional images were neither normalized nor smoothed to preserve 576 
information patterns in the individual’s native brain space. 577 

Univariate analysis 578 

Events were modeled as sustained boxcar epochs spanning their 579 
corresponding duration. They included the presentation of fixation points, videos (in 580 
which participants performed the imagery and hearing tasks), instructions for 581 
vividness rating or catch trial detection, and button presses. Events in catch trials, 582 
no-response, or wrong-response trials were modeled separately to improve model 583 
sensitivity. All events were convolved with a canonical hemodynamic response 584 
function (HRF) implemented in SPM12 and entered as regressors into a general 585 
linear model (GLM) for each individual. Each GLM also included head motion 586 
regressors and session-wise baseline regressors. The GLM was then estimated 587 
using functional data high pass filtered at 1/128 Hz. Individual-level contrasts were 588 
constructed using the beta estimates of regressors of interest and were subject to a 589 
one-sample t-test for group-level inference. 590 

To examine common activation in imagery and comparable hearing conditions 591 
(Figure S2), we took a minimum statistics approach (Nichols et al., 2005). We first 592 
obtained thresholded t-value-maps from imagery and hearing conditions (e.g., IS 593 
and HS), computed the minimum t-value from the two conditions for each voxel, and 594 
reported only voxels that were significant after the operation (t24 > 2.80, P < 0.005). 595 
Similarly, to examine differential activations in IS and IN in Figure 1d, we took the 596 
minimum t-value from the IS and IS > IN contrasts as well as IN and IN > IS 597 
contrasts. Therefore, all significant voxels revealed had both significant activities 598 
during one type of imagery and significant difference over the other. 599 

Multivoxel pattern analysis (MVPA) 600 

One additional participant was excluded from MVPA due to his lack of response 601 
to the coin video in all HS sessions, making the sample size N = 24. MVPA was 602 
conducted using The Decoding Toolbox (TDT, version 3.999E) (Hebart et al., 2015). 603 
Beta estimates of each video category from all three sessions in imagery (IS and IN) 604 
or hearing (HS and HN) conditions were obtained and were used to train and test a 605 
L2-norm support vector machine (SVM) available through LIBSVM (Chang and Lin, 606 
2011). We used a regularization parameter C = 1 and scaled the data at a range of 0 607 
to 1. To efficiently test which voxels across the brain could be used for accurate 608 
classification, we moved spherical searchlights (Kriegeskorte et al., 2006) 609 
throughout the brain. To avoid the choice of radius from biasing our results, we 610 
conducted searchlight analyses with varying radii from 1 - 8 voxels. The accuracy 611 
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maps obtained using a 4-voxel radius were visualized as surface renderings. 612 

To decode video categories within a condition (Figure 2; Figure S3), we used a 613 
leave-one-session-out cross-validation scheme. In each decoding step, two out of 614 
three sessions in the condition were used to train an SVM classifier and the 615 
remaining session was used as test data to decode the 10 video categories from 616 
multivoxel patterns. The average classification accuracy from all 3 decoding steps, 617 
each having a different test session and two corresponding training sessions, was 618 
calculated and assigned to the center voxel of the searchlight to generate a 619 
decoding accuracy map. 620 

To decode video categories across IS and IN data (Figure S4), we used a 621 
two-way leave-one-session-out cross-classification scheme. Similar to the previous 622 
scheme, two sessions from the IS condition were used to train a classifier, but the 623 
test data this time was one session from the IN condition. This procedure was 624 
iterated for all three IN sessions, each using a different combination of two IS 625 
sessions as training data. Next, the IS sessions were used as test data for 626 
classifiers trained with IN sessions. A cross-classification accuracy map was 627 
generated using the average accuracy obtained from a total of 6 decoding steps. 628 

To perform group-level inference, we normalized the individual-level accuracy 629 
maps into MNI space and smoothed them with a 6 mm FWHM Gaussian kernel to 630 
account for the individual neuroanatomical difference. These accuracy maps were 631 
then brought to one-sample t-tests and the mean accuracy level of each significant 632 
cluster (voxel-wise threshold: P < 0.005; cluster-wise threshold: PFDR < 0.05) was 633 
displayed. For better visualization, the range of data for display was controlled at 10 634 
– 20% (0 – 10% above the chance level of 10%) because accuracy above 20% was 635 
mostly observed in visual areas. 636 

Timeseries extraction from regions of interest (ROIs) 637 

Two types of ROIs were used for effective connectivity analyses. Spherical 638 
ROIs (left and right pSTG, left IPL, and left PMC) consisted of gray matter voxels 639 
within spheres whose center coordinates have been reported in Table S2. The 640 
radius of each sphere was 4 mm. Specifically, this small radius ensured that the left 641 
pSTG and left IPL ROIs that were situated nearby (Euclidean distance = 14.97 mm) 642 
had no shared voxels nor smoothing-induced (FWHM = 6 mm) data contamination. 643 
On the other hand, since gray matter voxels in bilateral PPC that were significant in 644 
univariate and MVPA analyses were clearly non-spherical, we created a mask using 645 
all significant voxels in bilateral PPC and used it to select the left and right PPC 646 
voxels. 647 

For each ROI, voxel-wise time courses in IS and IN were high pass filtered at 648 
1/128 Hz and the estimated effects of non-imagery regressors (e.g., fixation cue, 649 
button press, and head motion) were subtracted out. This adjustment should 650 
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increase DCM model sensitivity by excluding activities induced by non-imagery 651 
events. The resulting first principal component of each ROI was used for DCM 652 
analyses. 653 

Dynamic causal modeling (DCM) 654 

We used the bilinear DCM that features the following state equation: 655 

�� � �� � ��	� � ��#�1	  

where z denotes hidden neural activity from all ROIs and the dot notation denotes 656 
change per unit time. The A matrix represents baseline connectivity in the absence 657 
of external stimulation. The B matrix represents the modulatory effects of an 658 
experimental input u (IS or IN in the present study) on connectivity between regions. 659 
The C matrix represents the direct driving effect of each u on neuronal activity. 660 

Since we are interested in imagery-modulated connectivity, B matrix 661 
parameters are the most crucial to our study and those enabled connections for 662 
each model have been described in the main text. Regarding the rest of the 663 
parameters, we specified an all-ones A matrix (i.e., enabled baseline connectivity 664 
between every ROI pair) for both motor-to-sensory and memory-to-sensory models 665 
because we did not have any prior hypothesis regarding baseline connectivity. In 666 
terms of driving inputs, we specified imagery conditions to drive the motor and 667 
memory networks identified in univariate and MVPA analyses. We set IS as the 668 
driving input to left PMC in the motor-to-sensory model and IN as the driving input to 669 
bilateral PPC in the memory-to-sensory model. Enabled parameters had Gaussian 670 
priors with zero mean and non-zero variance while the others had zero variance. 671 

The neural activity z was coupled with a biophysically informed forward model 672 
(Friston et al., 2003; Zeidman et al., 2019a) to predict the BOLD timeseries. The 673 
default one-state, stochasticity-not-included version of DCM was used. A slice timing 674 
model was used in alignment with the slice timing correction performed during 675 
preprocessing. 676 

For subject-level model inversion, our goal was to find parameter estimates that 677 
maximize log model evidence. DCM uses a variational Laplace scheme to 678 
approximate model evidence with negative variational free energy (Friston et al., 679 
2007). This estimation scheme also penalizes model complexity calculated as the 680 
Kullback-Leibler divergence between the priors and the posteriors. Thus, DCM 681 
evaluates how well the model achieves a trade-off between accuracy and 682 
complexity. 683 

The expected parameter values and their covariance matrices at the subject 684 
level were then brought to a Parametric Empirical Bayes (PEB) analysis to make 685 
inferences about group-level effects (Friston et al., 2016; Zeidman et al., 2019a; 686 
Zeidman et al., 2019b). In terms of the between-subject design matrix, since our 687 
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experimental design involves no between-subject factors, the design matrix was 688 
simply an all-ones vector � � �1 1 … 1 1�� to model commonalities across subjects. 689 
In addition, random effects (unexplained between-subject variability) on parameters 690 
were assumed to account for individual differences. 691 

Having estimated parameters of the motor-to-sensory and memory-to-sensory 692 
full models and specified candidate reduced models by ‘switching off’ some 693 
parameters, we then performed Bayesian Model Reduction (BMR) (Friston et al., 694 
2016) to analytically derive the evidence and parameters of the reduced models. We 695 
compared the evidence of each reduced model to find the winning model described 696 
in the main text as well as pooled evidence of models belonging to each model 697 
family (Figures S5, S6). In Figure 3b and Figure 3c, we plotted parameters that had 698 
positive evidence (Pp > 0.75) of being present vs absent, assessed by Bayesian 699 
Model Average (BMA) on all reduced models. 700 

For data-model swapping in Figure 3d-g, we used the full model structures as in 701 
Figure 3b-c and fitted them with IS and IN data. The explained variance for each 702 
data-model combination was plotted in Figure 3d&f and two-sided Wilcoxon 703 
signed-rank tests were performed. The estimated group-level parameters were 704 
plotted in Figure 4e&g. Because the parameter estimates corresponded to a 705 
multivariate Gaussian density, we plotted the means and 95% confidence intervals 706 
computed with the leading diagonal of the covariance matrix. To compare the 707 
distributions yielded by a model with different data, we performed z-tests using the 708 
mean and variance of the parameter estimates. 709 
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